Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1344259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371594

RESUMO

The embryonic loss during early stage of gestation is one of the major causes of infertility for domestic ruminants, causing huge economic losses to pasture. Maternal recognition of pregnancy and implantation are the crucial process for determining the successful establishment and development of pregnancy in cattle. The research on molecular mechanisms of pregnancy recognition will facilitate illustrating the complex process of pregnancy establishment and help to improve pregnancy outcomes. In this study, we performed transcriptomic analysis of primary bovine endometrial epithelial cells (BEND) with or without IFNT and hormones intervention through RNA sequencing. We eventually identified 608 differentially expressed genes (DEGs) including 409 up-regulated genes and 199 down-regulated genes in IFNT and hormones-treated group compared with control group. Gene Ontology (GO) enrichment analysis demonstrated that the majority of DEGs were implicated in immune system process, response to external stimulus, response to cytokine, regulation of response to stress. Results from KEGG analysis showed a significant enrichment of NOD-like receptor signaling pathway, antigen processing and presentation, necroptosis, oxidative phosphorylation, RIG-I-like receptor signaling pathway. Additionally, a set of promising candidate genes, including (USP18, STAT1, PSMB8, IFIH1, MX2, IFI44, DHX58, CASP8, DRAM1, CXCR4), were characterized by constructing an integrated interaction network. Specifically, the mRNA expression of HOXA11, PTGS1 and PTGS2 were remarkably suppressed by silencing DRAM1 under IFNT and hormone administration, thus speculating that DRAM1 might play a crucial role in early pregnancy by regulating endometrial function. The results of this study depicted a relatively comprehensive transcriptional profiles of BEND in response to IFNT and hormones, which contributes to a better understanding of gene interaction network and underlying regulatory mechanisms in endometrium of ruminants during early pregnancy.

2.
Front Genet ; 13: 857705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664295

RESUMO

Gestation length is a complex polygenic trait that affects pig fetal development. The Qingping (QP) pig, a Chinese native black pig breed, is characterized by short gestation length. However, the genetic architecture of short gestation length is still not clear. The present study aimed to explore the genetic architecture of short gestation length in QP pigs. In this study, selective sweep analyses were performed to detect selective sweep signatures for short gestation length traits between 100 QP pigs and 219 pigs from 15 other breeds. In addition, differentially expressed genes for the short gestation length between QP pigs and Large White pigs were detected by RNA sequencing. Comparing candidate genes from these methods with known genes for preterm birth in the database, we obtained 111 candidate genes that were known preterm birth genes. Prioritizing other candidate genes, 839 novel prioritized candidate genes were found to have significant functional similarity to preterm birth genes. In particular, we highlighted EGFR, which was the most prioritized novel candidate relative to preterm birth genes. Experimental validations in placental and porcine trophectoderm cells suggest that EGFR is highly expressed in the QP pigs with short gestation length and could regulate the NF-κΒ pathway and downstream expression of PTGS2. These findings comprehensively identified candidate genes for short gestation length trait at the genomic and transcriptomic levels. These candidate genes provide an important new resource for further investigation and genetic improvement of gestation length.

3.
Animals (Basel) ; 12(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35565484

RESUMO

Teat number plays an important role in the reproductive performance of sows and the growth of piglets. However, the quantitative trait loci (QTLs) and candidate genes for the teat number-related traits in Qingping pigs remain unknown. In this study, we performed GWAS based on whole-genome single-nucleotide polymorphisms (SNPs) and insertions/deletions (Indels) for the total number of teats and five other related traits in 100 Qingping pigs. SNPs and Indels of all 100 pigs were genotyped using 10× whole genome resequencing. GWAS using General Linear Models (GLM) detected a total of 28 SNPs and 45 Indels as peak markers for these six traits. We also performed GWAS for the absolute difference between left and right teat number (ADIFF) using Fixed and random model Circulating Probability Unification (FarmCPU). The most strongly associated SNP and Indel with a distance of 562,788 bp were significantly associated with ADIFF in both GLM and FarmCPU models. In the 1-Mb regions of the most strongly associated SNP and Indel, there were five annotated genes, including TRIML1, TRIML2, ZFP42, FAT1 and MTNR1A. We also highlighted TBX3 as an interesting candidate gene for SSC14. Enrichment analysis of candidate genes suggested the Wnt signaling pathway may contribute to teat number-related traits. This study expanded significant marker-trait associations for teat number and provided useful molecular markers and candidate genes for teat number improvement in the breeding of sows.

4.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163786

RESUMO

Labor is a process of inflammation and hormonal changes involving both fetal and maternal compartments. MicroRNA-132-3p (miR-132-3p) has been reported to be involved in the development of inflammation-related diseases. However, little is known about its potential role in labor onset. This study aimed to explore the mechanism of miR-132-3p in amnion for labor initiation. In the mouse amnion membranes, the expression of miR-132-3p was found to increase gradually during late gestation. In human amniotic epithelial cell line (WISH), upregulation of miR-132-3p was found to increase proinflammatory cytokines and cyclooxygenase 2 (COX2) as well as prostaglandin E2 (PGE2), which was suppressed by miR-132-3p inhibitor. Dual-specificity phosphatase 9 (DUSP9) was identified as a novel target gene of miR-132-3p, which could be negatively regulated by miR-132-3p. DUSP9 was present in the mouse amnion epithelial cells, with a decrease in its abundance at 18.5 days post coitum (dpc) relative to 15.5 dpc. Silencing DUSP9 was found to facilitate the expression of proinflammatory cytokines and COX2 as well as PGE2 secretion in WISH cells, which could be attenuated by p38 inhibitor SB203580 or JNK inhibitor SP600125. Additionally, intraperitoneal injection of pregnant mice with miR-132-3p agomir not only caused preterm birth, but also promoted the abundance of COX2 as well as phosphorylated JNK and p38 levels, and decreased DUSP9 level in mouse amnion membranes. Collectively, miR-132-3p might participate in inflammation and PGE2 release via targeting DUSP9-dependent p38 and JNK signaling pathways to cause preterm birth.


Assuntos
Âmnio/imunologia , Fosfatases de Especificidade Dupla/genética , Inflamação/genética , Trabalho de Parto/genética , MicroRNAs/genética , Âmnio/citologia , Âmnio/metabolismo , Animais , Antracenos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Gravidez , Piridinas/farmacologia
5.
Biomolecules ; 11(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34572527

RESUMO

Amino acids are critical for mammalian target of rapamycin complex 1 (mTORC1) activation on the lysosomal surface. Amino acid transporters SLC38A9 and SLC36A1 are the members of the lysosomal amino acid sensing machinery that activates mTORC1. The current study aims to clarify the interaction of SLC38A9 and SLC36A1. Here, we discovered that leucine increased expressions of SLC38A9 and SLC36A1, leading to mTORC1 activation. SLC38A9 interacted with SLC36A1 and they enhanced each other's expression levels and locations on the lysosomal surface. Additionally, the interacting proteins of SLC38A9 in C2C12 cells were identified to participate in amino acid sensing mechanism, mTORC1 signaling pathway, and protein synthesis, which provided a resource for future investigations of skeletal muscle mass.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Simportadores/metabolismo , Animais , Linhagem Celular , Leucina , Camundongos , Fosforilação , Ligação Proteica , Mapas de Interação de Proteínas , Regulação para Cima
6.
Int J Mol Sci ; 18(7)2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28653987

RESUMO

Zinc finger protein 217 (Zfp217), a member of the krüppel-type zinc finger protein family, plays diverse roles in cell differentiation and development of mammals. Despite extensive research on the functions of Zfp217 in cancer, pluripotency and reprogramming, its physiological roles in adipogenesis remain unknown. Our previous RNA sequencing data suggest the involvement of Zfp217 in adipogenesis. In this study, the potential function of Zfp217 in adipogenesis was investigated through bioinformatics analysis and a series of experiments. The expression of Zfp217 was found to be gradually upregulated during the adipogenic differentiation in C3H10T1/2 cells, which was consistent with that of the adipogenic marker gene Pparg2. Furthermore, there was a positive, significant relationship between Zfp217 expression and adipocyte differentiation. It was also observed that Zfp217 could not only trigger proliferative defect in C3H10T1/2 cells, but also interact with Ezh2 and suppress the downstream target genes of Ezh2. Besides, three microRNAs (miR-503-5p, miR-135a-5p and miR-19a-3p) which target Zfp217 were found to suppress the process of adipogenesis. This is the first report showing that Zfp217 has the capacity to regulate adipogenesis.


Assuntos
Adipócitos/citologia , Adipogenia , Transativadores/genética , Regulação para Cima , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Linhagem Celular , Biologia Computacional , Humanos , Masculino , Camundongos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...